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ABSTRACT: Every family probably has a box of 

old family pictures in an attic that may have some 

nostalgic value. Among them are photos of mothers 

and dads, grandparents, brothers and sisters, 

friends, and classmates, which have been visibly 

damaged over the time. The degraded photos are 

most commonly restored and brought back to life 

manually. With the advancement in AI, deep 

learning approaches can be used to deliver 

satisfactory results rather than applying 

conventional restoration. Supervised learning fails 

here because the degradation in photos is highly 

complex and the domain gap between synthetic 

images and real old photos is large. The idea 

proposed in this paper is to build a domain 

translation network by mapping real photos with a 

large number of synthetic images. We train two 

variational autoencoders (VAEs) to respectively 

transform  old photos and clean photos into two 

latent spaces. The translation between these is 

closed in the compact latent space. Besides, to 

address multiple degradations mixed in one old 

photo, we design a global branch with a partial 

nonlocal block targeting the structured defects, 

such as scratches and dust spots, and a local branch 

targeting the unstructured defects, such as noises 

and blurriness. Two branches are fused in the latent 

space, leading to improved capability to restore old 

photos from multiple defects. Furthermore, we 

apply another face refinement network to recover 

fine details of faces in the old photos, thus 

ultimately generating photos with enhanced 

perceptual quality. With comprehensive 

experiments, the proposed pipeline demonstrates 

superior performance over state-of-the-art methods 

as well as existing commercial tools in terms of 

visual quality for old photos restoration. 

Keywords: —Image Restoration, Image 

Generation, Latent Space Translation, Mixed 

degradation 

 

I. INTRODUCTION 
PHOTOS are taken to freeze the happy 

moments that otherwise are gone. Even though 

time goes by, one can still evoke memories of the 

past by viewing them. Nonetheless, old photo 

prints deteriorate when kept in poor environmental 

condition, which causes the valuable photo content 

to be permanently damaged. Fortunately, as mobile 

cameras and scanners become more accessible, 

people can now digitalize the photos and invite a 

skilled specialist for restoration. However, manual 

retouching is usually laborious and time 

consuming, which leaves piles of old photos 

impossible to get restored. Hence, it is appealing to 

design automatic algorithms that can instantly 

repair old photos for those who wish to bring old 

photos back to life. Prior to the deep learning era, 

there are some attempts [1], [2], [3], [4] that restore 

photos by automatically detecting the localized 

defects such as scratches and blemishes, and filling 

in the damaged areas with inpainting techniques. 

Yet these methods focus on completing the missing 

content and none of them can repair the spatially-

uniform defects such as film grain, sepia effect, 

color fading, etc., so the photos after restoration 

still appear outdated compared to modern 

photographic images. With the emergence of deep 

learning, one can address a variety of low-level 

image restoration problems [5], [6], [7], [8], [9], 

[10], [11] by exploiting the powerful representation 

capability of convolutional neural networks, i.e., 

learning the mapping for a specific task from a 

large amount of synthetic images. The same 

framework, however, does not apply to old photo 

restoration and the reason is three-fold. First, the 

degradation process of old photos is rather 

complex, and there exists no degradation model 

that can realistically render the old photo artifact. 

Therefore, the model learned from those synthetic 

data generalizes poorly on real photos. Second, old 

photos are plagued with a compound of 

degradation and inherently require different 

strategies for repair: unstructured defects that are 

spatially homogeneous, e.g., film grain and color 

fading, should be restored by utilizing the pixels in 

the neighborhood, whereas the structured defects, 

e.g., scratches, dust spots, etc., should be repaired 

with a global image context. Furthermore, people 

are fastidious to tiny artifacts around faces yet a 
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network trained on general natural images cannot 

capture facial intrinsic characteristics. Thus, a 

network targeting for face retouching is needed 

especially considering portraits account for a large 

proportion of old photos. To circumvent these 

issues, we formulate the old photo restoration as a 

triplet domain translation problem. Different from 

previous image translation methods [12], we 

leverage data from three domains (i.e., real old 

photos, synthetic images and the corresponding 

ground truth), and the translation is performed in 

latent space. Synthetic images and the real photos 

are first transformed to the same latent space with a 

shared variational autoencoder [13] (VAE). 

Meanwhile, another VAE is trained to project 

ground truth clean images into the corresponding 

latent space. The mapping between the two latent 

spaces is then learned with the synthetic image 

pairs, which restores the corrupted images to clean 

ones. The advantage of the latent restoration is that 

the learned latent restoration can generalize well to 

real photos because of the domain alignment within 

the first VAE. Besides, we differentiate the mixed 

degradation and propose a partial nonlocal block 

that considers the long range dependencies of latent 

features to specifically address the structured 

defects during the latent translation. Finally, 

considering that faces are the most important visual 

stimuli, we propose a post-processing step with a 

coarse-to-fine generator to reconstruct high-

resolution faces with hierarchical spatial adaptive 

conditions. Some results are shown in Figure 1. In 

comparison with several leading restoration 

methods, we prove the effectiveness of our 

approach in restoring multiple degradations of real 

photos. 

 

II. RELATED WORK 
Single degradation image restoration. 

Existing image degradation can be 

roughly categorized into two groups: unstructured 

degradation such as noise, blurriness, color fading, 

and low resolution, and structured degradation such 

as holes, scratches, and spots. For the former 

unstructured ones, traditional works often impose 

different image priors, including nonlocal self-

similarity [14], [15], [16], sparsity [17], [18], [19], 

[20] and local smoothness [21], [22], [23]. 

Recently, a lot of deep learning based methods 

have also been proposed for different image 

degradation, like image denoising [5], [6], [24], 

[25], [26], [27], [28], superresolution [7], [29], 

[30], [31], [32], and deblurring [8], [33], [34], [35].  

Compared to unstructured degradation, 

structured degradation is more challenging and 

often modeled as the ―image painting‖ problem. 

Thanks to powerful semantic modeling ability, 

most existing best-performed inpainting methods 

are learning based. For example, Liu et al. [36] 

masked out the hole regions within the convolution 

operator and enforces the network focus on non-

hole features only. To get better inpainting results, 

many other methods consider both local patch 

statistics and global structures. Specifically, Yu et 

al. [37] and Liu et al. [38] proposed to employ an 

attention layer to utilize the remote context. And 

the appearance flow is explicitly estimated by Ren 

et al. [39] so that textures in the hole regions can be 

directly synthesized based on the corresponding 

patches.  

No matter for unstructured or structured 

degradation, though the above learning-based 

methods can achieve remarkable results, they are 

all trained on the synthetic data. Therefore, their 

performance on the real dataset highly relies on 

synthetic data quality. For real old images, since 

they are often seriously degraded by a mixture of 

unknown degradation, the underlying degradation 

process is much more difficult to be accurately 

characterized. In other words, the network trained 

on synthetic data only, will suffer from the domain 

gap problem and perform badly on real old photos. 

In this paper, we model real old photo restoration 

as a new triplet domain translation problem and 

some new techniques are adopted to minimize the 

domain gap. 

 

Mixed degradation image restoration.  

In the real world, a corrupted image may 

suffer from complicated defects mixed with 

scratches, loss of resolution, color fading, and film 

noises. However, research solving mixed 

degradation is much less explored. The pioneer 

work RL-Restore [40] proposed a toolbox that 

comprises multiple light-weight networks, and each 

of them responsible for a specific degradation. 

Then they learn a controller that dynamically 

selects the operator from the toolbox. Inspired by 

RL-Restore [40], Suganum et al. [41] performs 

different convolutional operations in parallel and 

uses the attention mechanism to select the most 

suitable combination of operations. However, these 

methods still rely on supervised learning from 

synthetic data and hence cannot generalize to real 

photos. Besides, they only focus on unstructured 

defects and do not support structured defects like 

image inpainting. On the other hand, DIP [42] 

found that the deep neural network inherently 

resonates with low-level image statistics and 

thereby can be utilized as an image prior for blind 

image restoration without external training data. 

This method has the potential, though not claimed 
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in DIP [42], to restore in-the-wild images corrupted 

by mixed factors. In comparison, our approach 

excels in both restoration performance and 

efficiency.  

Face restoration. A variety of methods 

specifically designed for face restoration have been 

proposed. Early works [43], [44] attempt to deblur 

faces by the guidance of an external reference, but 

an exemplar image with suitable texture for transfer 

is inconvenient to retrieve and the requirement of 

an external face database makes it cumbersome for 

practical usage. On the other hand, most 

contemporary works [45] rely on generative 

adversarial network (GAN) to resolve the 

blurriness and produce realistic result. It is 

noteworthy that the restoration quality could be 

boosted by explicitly considering intrinsic facial 

priors such as face parsing [46], facial landmarks 

[47], identity prior [48] or 3D morphable models 

[49]. Nonetheless, these methods require extra 

networks to perform those auxiliary tasks, which 

brings robustness issue when processing the face 

images that suffer from large pose and severe 

degradations. A recent work [50] utilizes a pre-

trained generative model and searches the latent 

code that conforms to the input. Albeit impressive, 

the generated faces suffer from fidelity issue. In 

this work, we aim to restore in-the-wild faces with 

well-preserved identity while caring for robustness. 

To this end, we do not rely on face prior and learn 

the restoration by synthesis: instead of letting the 

network digest the degraded faces as input, the 

output is synthesized from a latent noise with the 

latent features modulated by the degraded faces 

through spatially variant de-normalization. We will 

show that this approach achieves preferable quality 

in restoring vintage portraits. Old photo restoration. 

Old photo restoration is a classical mixed 

degradation problem, but most existing methods 

[1], [2], [3], [4] focus on inpainting only. They 

follow a similar paradigm i.e., defects like 

scratches and blotches are first identified according 

to low-level features and then inpainted by 

borrowing the textures from the vicinity. However, 

the hand-crafted models and low-level features they 

used are difficult to detect and fix such defects 

well. Moreover, none of these methods consider 

restoring some unstructured defects such as color 

fading or low resolution together with inpainting. 

Thus photos still appear old fashioned after 

restoration. In this work, we reinvestigate this 

problem by virtue of a data-driven approach, which 

can restore images from multiple defects 

simultaneously and turn heavily damaged old 

photos to modern style. 

 

III. METHODOLOGY 
In contrast to conventional image 

restoration tasks, old photo restoration is more 

challenging. First, old photos contain far more 

complex degradation that is hard to be modeled 

realistically and there always exists a domain gap 

between synthetic and real photos. As such, the 

network usually cannot generalize well to real 

photos by purely learning from synthetic data. 

Second, the defects of old photos is a compound of 

multiple degradations, thus essentially requiring 

different strategies for restoration. Unstructured 

defects such as film noise, blurriness and color 

fading, etc. can be restored with spatially 

homogeneous filters by making use of surrounding 

pixels within the local patch; structured defects 

such as scratches and blotches, on the other hand, 

should be inpainted by considering the global 

context to ensure the structural consistency. In the 

following, we first describe our main framework to 

address the aforementioned generalization issue 

and mixed degradation issue respectively. After 

that, we introduce auxiliary network for face 

enhancement, so as to further improve the 

restoration quality. 
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Fig. 2: Illustration of our translation method with three domains. The domain gap between ZX and ZR will be 

reduced in the shared latent space. 

 

3.1 Restoration via latent space translation  

In order to mitigate the domain gap, we 

formulate the old photo restoration as an image 

translation problem, where we treat clean images 

and old photos as images from distinct domains 

and we wish to learn the mapping in between. 

However, as opposed to general image translation 

methods that bridge two different domains [12], 

[51], we translate images across three domains: the 

real photo domain R, the synthetic domain X where 

images suffer from artificial degradation, and the 

corresponding ground truth domain Y that 

comprises images without degradation. Such triplet 

domain translation is crucial in our task as it 

leverages the unlabeled real photos as well as a 

large amount of synthetic data associated with 

ground truth.  

We denote images from three domains 

respectively with r ∈ R, x ∈ X and y ∈ Y, where x 

and y are paired by data synthesis, i.e., x is 

degraded from y. Directly learning the mapping 

from real photos {r}i=1
N
 to clean images {y}i=1

N
 is 

hard since they are not paired and thus unsuitable 

for supervised learning. We thereby propose to 

decompose the translation with two stages, which 

are illustrated in Figure 2. First, we propose to map 

R, X , Y to corresponding latent spaces via ER : R 

→ ZR, EX : X → ZX , and EY : Y → ZY , 

respectively. In particular, because synthetic 

images and real old photos are both corrupted, 

sharing similar appearances, we align their latent 

space into the shared domain by enforcing some 

constraints. Therefore we have ZR≈ ZX . This 

aligned latent space encodes features for all the 

corrupted images, either synthetic or real ones. 

Then we propose to learn image restoration in the 

latent space. Specifically, by utilizing the synthetic 

data pairs {x, y} i=1
N
, we learn the translation from 

the latent space of corrupted images, ZX , to the 

latent space of ground truth, ZY , through the 

mapping TZ : ZX → ZY , where ZY can be further 

reversed to Y through generator GY : ZY → Y. By 

learning the latent space translation, real old photos 

r can be restored by sequentially performing the 

mappings,  

rR→Y = GY ◦ TZ ◦ ER(r).             (1) 
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Fig. 3: Architecture of our restoration network. (I.) We first train two VAEs: VAE1 for images in real photos 

r ∈ R and synthetic images x ∈ X , with their domain gap closed by jointly training an adversarial discriminator; 

VAE2 is trained for clean images y ∈ Y. With VAEs, images are transformed to compact latent space. (II.) 

Then, we learn the mapping that restores the corrupted images to clean ones in the latent space. 

 

Domain alignment in the VAE latent 

space     One key of our method is to meet the 

assumption that R and X are encoded into the same 

latent space. To this end, we propose to utilize 

variational autoencoder [13] (VAE) to encode 

images with compact representation, whose domain 

gap is further examined by an adversarial 

discriminator [52]. We use the network architecture 

shown in Figure 3 to realize this concept. 

In the first stage, two VAEs are learned for the 

latent representation. Old photos {r} and synthetic 

images {x} share the first one termed VAE1, with 

the encoder ER,X and generator GR,X , while the 

ground true images {y} are fed into the second one, 

VAE2 with the encoder-generator pair {EY , GY }. 

VAE1 is shared for both r and x in the aim that 

images from both corrupted domains can be 

mapped to a shared latent space. The VAEs 

assumes Gaussian prior for the distribution of latent 

codes, so that images can be reconstructed by 

sampling from the latent space. We use the re-

parameterization trick to enable differentiable 

stochastic sampling [53] and optimize VAE1 with 

data {r} and {x} respectively.  

                                                         
(2) 

where, zr ∈ ZR is the latent codes for r, and 

rR→R is the generation output. The first term in 

equations is the KL-divergence that penalizes 

deviation of the latent distribution from the 

Gaussian prior. The second `1 term lets the VAE 

reconstruct the inputs, implicitly enforcing latent 

codes to capture the major information of images. 

Besides, we introduce the least-square loss 

(LSGAN) [54], denoted as LVAE1,GAN in the 

formula, to address the well-known over-smooth 

issue in VAEs, further encouraging VAE to 

reconstruct images with high realism. The objective 

with {x}, denoted as LVAE1 (x), is defined similarly. 

And VAE2 for domain Y is trained with a similar 

loss so that the corresponding latent representation 
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zy ∈ Y can be derived. We use VAE rather than 

vanilla autoencoder because VAE features denser 

latent representation due to the KL regularization 

(which will be proved in ablation study), and this 

helps produce closer latent space for {r} and {x} 

with VAE1 thus leading to smaller domain gap. To 

further narrow the domain gap in this reduced 

space, we propose to use an adversarial network to 

examine the residual latent gap. Concretely, we 

train another discriminator DR,X that differentiates 

ZR and ZX , whose loss is defined as, 

                               
(3) 

Meanwhile, the encoder ER,X of VAE1 tries to fool 

the discriminator with a contradictory loss to 

ensure that R and X are mapped to the same space. 

Combined with the latent adversarial loss, the total 

objective function for VAE1 becomes, 

                     
(4) 

Restoration through latent mapping   

With the latent code captured by VAEs, in the 

second stage, we leverage the synthetic image pairs 

{x, y} and propose to learn the image restoration 

by mapping their latent space (the mapping 

network M in Figure 3). The benefit of latent 

restoration is threefold. First, as R and X are 

aligned into the same latent space, the mapping 

from ZX  to ZY  will also generalize well to 

restoring the images in R. Second, the mapping in a 

compact low-dimensional latent space is in 

principle much easier to learn than in the high-

dimensional image space. In addition, since the two 

VAEs are trained independently and the 

reconstruction of the two streams would not be 

interfered with each other. The generator GY can 

always get an absolutely clean image without 

degradation given the latent code zY mapped from 

ZX , whereas degradations will likely remain if we 

learn the translation in pixel level. 

Let rR→Y , xX→Y and yY→Y be the final translation 

outputs for r, x and y, respectively. At this stage, 

we solely train the parameters of the latent 

mapping network T and fix the two VAEs. The loss 

function LT , which is imposed at both the latent 

space and the end of generator GY , consists of 

three terms,  

                                             
(5) 

where the latent space loss, LT ,l1 = E ||T 

(zx) − zy)||1 , penalizes the l1 distance of the 

corresponding latent codes. We introduce the 

adversarial loss LT ,GAN, still in the form of LSGAN 

[54], to encourage the ultimate translated synthetic 

image xX→Y to look real. Besides, we introduce 

feature matching loss LFM to stabilize the GAN 

training. Specifically, LFM matches the multi-level 

activations of the adversarial network DM, and that 

of the pretrained VGG network (also known as 

perceptual loss in [12], [55]), i.e.,  

 

                                      
(6) 

where φ
 i
 DT (φ

 i
 VGG) denotes the i th layer feature 

map of the discriminator (VGG network), and n
 i
 DT 

(n
 i 

VGG) indicates the number of activations in that 

layer. 
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Fig. 4: Partial nonlocal block. Left shows the principle. The pixels within the hole areas are inpainted by the 

context pixels outside the corrupted region. Right shows the detailed implementation. 

 

3.2 Multiple degradation restoration  

The latent restoration using the residual 

blocks, as described earlier, only concentrates on 

local features due to the limited receptive field of 

each layer. Nonetheless, the restoration of 

structured defects requires plausible inpainting, 

which has to consider long-range dependencies so 

as to ensure global structural consistency. Since 

legacy photos often contain mixed degradations, 

we have to design a restoration network that 

simultaneously supports the two mechanisms. 

Towards this goal, we propose to enhance the latent 

restoration network by incorporating a global 

branch as shown in Figure 3, which composes of a 

nonlocal block [56] that considers global context 

and several residual blocks in the following. While 

the original block proposed in [56] is unaware of 

the corruption area, our nonlocal block explicitly 

utilizes the mask input so that the pixels in the 

corrupted region will not be adopted for completing 

those area. Since the context considered is a part of 

the feature map, we refer to the module specifically 

designed for the latent inpainting as a partial 

nonlocal block, which is shown in Figure 4. 

Formally, let F ∈ R 
C×HW

 be the 

intermediate feature map in M (C, H and W are 

number of channels, height and width 

respectively), and m ∈ {0, 1}
 HW

 represents the 

binary mask downscaled to the same size, where 1 

represents the defect regions to be inpainted and 0 

represents the intact regions. The affinity between i 

th location and j th location in F, denoted by si,j ∈ R
 

HW×HW
 , is calculated by the correlation of Fi and Fj 

modulated by the mask (1−mj ), i.e.,  

                               (7) 

Where, 

                                                   
(8) 

gives the pairwise affinity with embedded 

Gaussian. Here, θ and φ project F to Gaussian 

space for affinity calculation. According to the 

affinity si,j that considers the holes in the mask, the 

partial nonlocal finally outputs 

                                                                  
(9) 

which is a weighted average of correlated 

features for each position. We implement the 

embedding functions θ, φ, µ and ν with 1×1 

convolutions. 

We design the global branch specifically for 

inpainting and hope the non-hole regions are left 

untouched, so we fuse the global branch with the 

local branch under the guidance of the mask, i.e., 

                              
(10) 



 

 

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 3, Issue 6 June 2021,  pp: 1254-1266  www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-030612541266  Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal  Page 1261 

where operator ๏ denotes Hadamard 

product, and ρlocal and ρglobal denote the nonlinear 

transformation of residual blocks in two branches. 

In this way, the two branches constitute the latent 

restoration network, which is capable to deal with 

multiple degradation in old photos. We will detail 

the derivation of the defect mask in Section 4.1.  

Table 1 shows the detailed network structure. 

 

3.3 Defect Region Detection    

Since the global branch of our restoration 

network requires a mask m as the guidance, in 

order to get the mask automatically, we train a 

scratch detection network in a supervised way by 

using a mixture of real scratched dataset and 

synthetic dataset. Specifically, let {si , yi |si ∈ S, yi 

∈ Y} denote the whole training pairs, where si and 

yi are the scratched image and the corresponding 

binary scratch mask respectively, we use the cross-

entropy loss to minimize the difference between the 

predicted mask yˆi and yi , 

                              
(11) 

Since the scratch regions are often a small 

portion of the whole image, here we use a weight αi 

to remedy the imbalance of positive and negative 

pixel samples. To determine the detailed value of αi 

, we compute the positive/negative proportion of yi 

on the fly, 

                                                              
(12) 

 

Module Layer Kernel size/stride Output size 

Encoder E Conv 

Conv 

Conv 

ResBlock×4 

7 × 7/1 

4 × 4/2 

4 × 4/2 

3 × 3/1 

256×256×64 

128×128×64 

64 × 64 × 64 

64 × 64 × 64 

Generator G ResBlock×4 

Deconv 

Deconv 

Conv 

3 × 3/1 

4 × 4/2 

4 × 4/2 

7 × 7/1 

64 × 64 × 64 

128×128×64 

256×256×64 

256×256×3 

Mapping T Conv 

Conv 

Conv 

 

Partial 

nonlocal 

Resblock×2  

 

ResBlock×6 

Conv 

Conv 

Conv 

 

3 × 3/1 

3 × 3/1 

3 × 3/1 

 

1 × 1/1 

3 × 3/1 

 

3 × 3/1 

3 × 3/1 

3 × 3/1 

3 × 3/1 

64 × 64 × 128 

64 × 64 × 256 

64 × 64 × 512 

 

64 × 64 × 512 

64 × 64 × 512 

 

64 × 64 × 512 

64 × 64 × 256 

64 × 64 × 128 

64 × 64 × 64 

TABLE 1: Detailed network structure. The modules in the global branch of the mapping network are 

highlighted in gray 

 

Besides, we also introduce the focal loss to focus on the hard samples, 

             (13) 
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where, 

                                 (14) 

Therefore, the whole detection objective is 

                                                                   (15) 

By default, we set the parameters in Equations (13) and (15) with γ = 0.2 and β = 10. And the detection network 

adopts U-Net architecture which reuses low-level features through extensive skip connection. 

 

IV. EXPERIMENT 
4.1 Implementation  

Training Dataset   We synthesize old 

photos using images from the Pascal VOC dataset 

[58]. In Section 4.2, we introduce how to render 

realistic defects. Besides, we collect 5,718 old 

photos to form the images of the old photo dataset. 

To train the face enhancement network, we use 

50,000 aligned high resolution face images from 

FFHQ [59]. 

Training details    We adopt Adam solver 

[62] with β1 = 0.5 and β2 = 0.999. The learning 

rate is set to 0.0002 for the first 100 epochs, with 

linear decay to zero thereafter. During training, we 

randomly crop images to 256×256. In all the 

experiments, we empirically set the parameters in 

Equations (2) and (5) with α = 10, λ1 = 60 and λ2 = 

10 respectively. 

 

4.2 Data Generation  

Next, we brief the old photo synthesis 

procedure. Though we cannot fully emulate the old 

photo style, a careful synthesis is vital to high-

quality restoration as support overlap between two 

domain distributions eases domain adaptation [63]. 

Unstructured Degradation We use the following 

operations to simulate the unstructured 

degradation. Specifically, 

1) Gaussian white noise with σ ∈ (5, 50). 

2) Gaussian blur with kernel size k ⊂ {3, 5, 7} and 

standard deviation σ ∈ (1.0, 5.0);  

3) JPEG compression whose quality level in the 

range of (40, 100);  

4) Color jitter which randomly shifts the RGB 

color channels by (−20, 20);  

5) Box blur to mimic the lens defocus. 

 

We apply the above types of 

augmentations with varying parameters in random 

order. To achieve more variations, we 

stochastically drop out each type of operation with 

30% probability. Still, the synthesis cannot exactly 

match the appearance of real photo defects, thus 

requiring the proposed network to further reduce 

the domain gap. 

Structured Degradation As described in 

Section 3.3, to train the defect region detection 

network, a mixture of synthetic and real scratch 

datasets are used (pretrain on synthetic and finetune 

on real). For the synthetic part, we collect 62 

scratch texture images and 55 paper texture images, 

which are further augmented with elastic 

distortions. Then we use layer addition, lighten-

only and screen modes with random level of 

opacity to blend the scratch textures over the 

natural images from the Pascal VOC dataset [58]. 

Besides, in order to simulate large-area photo 

damage, we generate holes with feathering and 

random shape where the underneath paper texture 

is unveiled. Note that we also introduce film grain 

noise and blur with random kernel to simulate the 

global defects at this stage so that the synthetic data 

has a similar global style as the real old photos. 

These injected noises are beneficial in that they 

make the distribution of synthetic and real data 

become more overlapped. Examples of synthesized 

scratched old photos are shown in Figure 8. 

To improve the detection performance on 

real old photos, we collect 783 real old photos and 

manually annotate the local defects, among which 

400 images are used for training and remaining for 

testing.As shown in Figure 6, adding the real data 

into training can significantly boost the scratch 

detection performance on real old photos and 

achieve AUC as 0.912. Some sampled scratch 

detection masks and restoration results of test 

dataset are shown in Figure 9. 
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Input                         Output 

 
                                                

Fig. 5: Qualitative comparison of input and 

output. It shows that our  method can restore both            

unstructured and structured degradation 

 
Fig. 6: Some defect region detection results on 

real photos 

 

 

V. CONCLUSION 
We propose a novel triplet domain 

translation network that opens new avenue to 

restore the mixed degradation for in the-wild old 

photos. The domain gap is reduced between old 

photos and synthetic images, and the translation to 

clean images is learned in latent space. Our method 

suffers less from generalization issue compared 

with prior methods. Besides, we propose a partial 

nonlocal block which restores the latent features by 

leveraging the global context, so the scratches can 

be inpainted with better structural consistency. 

Furthermore, we propose a coarse-to-fine generator 

with spatial adaptive condition to reconstruct the 

face regions of old photos. Our method 

demonstrates good performance in restoring 

severely degraded old photos. However, our 

method cannot handle complex shading. This is 

because our dataset contains few old photos with 

such defects. One could possibly address this 

limitation using our framework by explicitly 

considering the shading effects during synthesis or 

adding more such photos as training data. 

 

REFERENCES 
[1]. F. Stanco, G. Ramponi, and A. De Polo, 

―Towards the automated restoration of old 

photographic prints: a survey,‖ in The IEEE 

Region 8 EUROCON 2003. Computer as a 

Tool., vol. 2. IEEE, 2003, pp. 370–374. 

[2]. V. Bruni and D. Vitulano, ―A generalized 

model for scratch detection,‖ IEEE 

transactions on image processing, vol. 13, 

no. 1, pp. 44–50, 2004. 

[3]. R.-C. Chang, Y.-L. Sie, S.-M. Chou, and T. 

K. Shih, ―Photo defect detection for image 

inpainting,‖ in Seventh IEEE International 

Symposium on Multimedia (ISM’05). IEEE, 

2005, pp. 5–pp.  

[4]. I. Giakoumis, N. Nikolaidis, and I. Pitas, 

―Digital image processing techniques for the 

detection and removal of cracks in digitized 

paintings,‖ IEEE Transactions on Image 

Processing, vol. 15, no. 1, pp. 178–188, 

2005. 

[5]. K. Zhang, W. Zuo, S. Gu, and L. Zhang, 

―Learning deep cnn denoiser prior for image 

restoration,‖ in Proceedings of the IEEE 

Conference on Computer Vision and Pattern 

Recognition, 2017, pp. 3929–3938.  

[6]. K. Zhang, W. Zuo, Y. Chen, D. Meng, and 

L. Zhang, ―Beyond a gaussian denoiser: 

Residual learning of deep cnn for image 

denoising,‖ IEEE Transactions on Image 

Processing, vol. 26, no. 7, pp. 3142–3155, 

2017.  



 

 

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 3, Issue 6 June 2021,  pp: 1254-1266  www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-030612541266  Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal  Page 1264 

[7]. C. Dong, C. C. Loy, K. He, and X. Tang, 

―Learning a deep convolutional network for 

image super-resolution,‖ in European 

conference on computer vision. Springer, 

2014, pp. 184–199.  

[8]. L. Xu, J. S. Ren, C. Liu, and J. Jia, ―Deep 

convolutional neural network for image 

deconvolution,‖ in Advances in Neural 

Information Processing Systems, 2014, pp. 

1790–1798.  

[9]. W. Ren, S. Liu, H. Zhang, J. Pan, X. Cao, 

and M.-H. Yang, ―Single image dehazing 

via multi-scale convolutional neural 

networks,‖ in European conference on 

computer vision. Springer, 2016, pp. 154– 

169.  

[10]. B. Zhang, M. He, J. Liao, P. V. Sander, L. 

Yuan, A. Bermak, and D. Chen, ―Deep 

exemplar-based video colorization,‖ in 

Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 

2019, pp. 8052–8061.  

[11]. Q. Gao, X. Shu, and X. Wu, ―Deep 

restoration of vintage photographs from 

scanned halftone prints,‖ in Proceedings of 

the IEEE International Conference on 

Computer Vision, 2019, pp. 4120–4129.  

[12]. P. Isola, J.-Y. Zhu, T. Zhou, and A. A. 

Efros, ―Image-to-image translation with 

conditional adversarial networks,‖ in 

Computer Vision and Pattern Recognition 

(CVPR), 2017 IEEE Conference on, 2017.  

[13]. D. P. Kingma and M. Welling, ―Auto-

encoding variational bayes,‖ arXiv preprint 

arXiv:1312.6114, 2013. [14] A. Buades, B. 

Coll, and J.-M. Morel, ―A non-local 

algorithm for image denoising,‖ in 2005 

IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition 

(CVPR’05), vol. 2. IEEE, 2005, pp. 60–65. 

[14]. J. Mairal, F. Bach, J. Ponce, G. Sapiro, and 

A. Zisserman, ―Nonlocal sparse models for 

image restoration,‖ in 2009 IEEE 12th 

international conference on computer vision. 

IEEE, pp. 2272–2279.  

[15]. K. Dabov, A. Foi, V. Katkovnik, and K. 

Egiazarian, ―Image denoising by sparse 3-d 

transform-domain collaborative filtering,‖ 

IEEE Transactions on image processing, vol. 

16, no. 8, pp. 2080–2095, 2007.  

[16]. M. Elad and M. Aharon, ―Image denoising 

via sparse and redundant representations 

over learned dictionaries,‖ IEEE 

Transactions on Image processing, vol. 15, 

no. 12, pp. 3736–3745, 2006.  

[17]. J. Mairal, M. Elad, and G. Sapiro, ―Sparse 

representation for color image restoration,‖ 

IEEE Transactions on image processing, vol. 

17, no. 1, pp. 53–69, 2007.  

[18]. J. Yang, J. Wright, T. S. Huang, and Y. Ma, 

―Image super-resolution via sparse 

representation,‖ IEEE transactions on image 

processing, vol. 19, no. 11, pp. 2861–2873, 

2010.  

[19]. J. Xie, L. Xu, and E. Chen, ―Image 

denoising and inpainting with deep neural 

networks,‖ in Advances in neural 

information processing systems, 2012, pp. 

341–349.  

[20]. Y. Weiss and W. T. Freeman, ―What makes 

a good model of natural images?‖ in 2007 

IEEE Conference on Computer Vision and 

Pattern Recognition. IEEE, 2007, pp. 1–8.  

[21]. S. D. Babacan, R. Molina, and A. K. 

Katsaggelos, ―Total variation super 

resolution using a variational approach,‖ in 

2008 15th IEEE International Conference on 

Image Processing. IEEE, 2008, pp. 641– 

644.  

[22]. S. Z. Li, Markov random field modeling in 

image analysis. Springer Science & Business 

Media, 2009.  

[23]. K. Zhang, W. Zuo, and L. Zhang, ―Ffdnet: 

Toward a fast and flexible solution for cnn-

based image denoising,‖ IEEE Transactions 

on Image Processing, vol. 27, no. 9, pp. 

4608–4622, 2018.  

[24]. X. Mao, C. Shen, and Y.-B. Yang, ―Image 

restoration using very deep convolutional 

encoder-decoder networks with symmetric 

skip connections,‖ in Advances in neural 

information processing systems, 2016, pp. 

2802–2810.  

[25]. S. Lefkimmiatis, ―Universal denoising 

networks: a novel cnn architecture for image 

denoising,‖ in Proceedings of the IEEE 

conference on computer vision and pattern 

recognition, 2018, pp. 3204–3213.  

[26]. D. Liu, B. Wen, Y. Fan, C. C. Loy, and T. S. 

Huang, ―Non-local recurrent network for 

image restoration,‖ in Advances in Neural 

Information Processing Systems, 2018, pp. 

1673–1682.  

[27]. Y. Zhang, K. Li, K. Li, B. Zhong, and Y. Fu, 

―Residual nonlocal attention networks for 

image restoration,‖ arXiv preprint 

arXiv:1903.10082, 2019.  

[28]. J. Kim, J. Kwon Lee, and K. Mu Lee, 

―Accurate image superresolution using very 

deep convolutional networks,‖ in 

Proceedings of the IEEE conference on 



 

 

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 3, Issue 6 June 2021,  pp: 1254-1266  www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-030612541266  Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal  Page 1265 

computer vision and pattern recognition, 

2016, pp. 1646–1654.  

[29]. C. Ledig, L. Theis, F. Huszar, J. Caballero, 

A. Cunningham, ´ A. Acosta, A. Aitken, A. 

Tejani, J. Totz, Z. Wang et al., 

―Photorealistic single image super-resolution 

using a generative adversarial network,‖ 

arXiv preprint, 2017.  

[30]. X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. 

Dong, Y. Qiao, and C. Change Loy, 

―Esrgan: Enhanced super-resolution 

generative adversarial networks,‖ in 

Proceedings of the European Conference on 

Computer Vision (ECCV), 2018, pp. 0–0.  

[31]. Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and 

Y. Fu, ―Residual dense network for image 

super-resolution,‖ in Proceedings of the 

IEEE Conference on Computer Vision and 

Pattern Recognition, 2018, pp. 2472–2481.  

[32]. J. Sun, W. Cao, Z. Xu, and J. Ponce, 

―Learning a convolutional neural network 

for non-uniform motion blur removal,‖ in 

Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 

2015, pp. 769–777.  

[33]. S. Nah, T. Hyun Kim, and K. Mu Lee, 

―Deep multi-scale convolutional neural 

network for dynamic scene deblurring,‖ in 

Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 

2017, pp. 3883–3891.  

[34]. O. Kupyn, V. Budzan, M. Mykhailych, D. 

Mishkin, and J. Matas, ―Deblurgan: Blind 

motion deblurring using conditional 

adversarial networks,‖ in Proceedings of the 

IEEE Conference on Computer Vision and 

Pattern Recognition, 2018, pp. 8183–8192.  

[35]. G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, 

A. Tao, and B. Catanzaro, ―Image inpainting 

for irregular holes using partial 

convolutions,‖ in Proceedings of the 

European Conference on Computer Vision 

(ECCV), 2018, pp. 85–100.  

[36]. J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and 

T. S. Huang, ―Generative image inpainting 

with contextual attention,‖ in Proceedings of 

the IEEE Conference on Computer Vision 

and Pattern Recognition, 2018, pp. 5505–

5514. 

[37]. H. Liu, B. Jiang, Y. Xiao, and C. Yang, 

―Coherent semantic attention for image 

inpainting,‖ arXiv preprint 

arXiv:1905.12384, 2019.  

[38]. Y. Ren, X. Yu, R. Zhang, T. H. Li, S. Liu, 

and G. Li, ―Structureflow: Image inpainting 

via structure-aware appearance flow,‖ arXiv 

preprint arXiv:1908.03852, 2019.  

[39]. K. Yu, C. Dong, L. Lin, and C. Change Loy, 

―Crafting a toolchain for image restoration 

by deep reinforcement learning,‖ in 

Proceedings of the IEEE conference on 

computer vision and pattern recognition, 

2018, pp. 2443–2452.  

[40]. M. Suganuma, X. Liu, and T. Okatani, 

―Attention-based adaptive selection of 

operations for image restoration in the 

presence of unknown combined distortions,‖ 

arXiv preprint arXiv:1812.00733, 2018.  

[41]. D. Ulyanov, A. Vedaldi, and V. Lempitsky, 

―Deep image prior,‖ in Proceedings of the 

IEEE Conference on Computer Vision and 

Pattern Recognition, 2018, pp. 9446–9454.  

[42]. Y. Hacohen, E. Shechtman, and D. 

Lischinski, ―Deblurring by example using 

dense correspondence,‖ in Proceedings of 

the IEEE International Conference on 

Computer Vision, 2013, pp. 2384–2391.  

[43]. J. Pan, Z. Hu, Z. Su, and M.-H. Yang, 

―Deblurring face images with exemplars,‖ in 

European conference on computer vision. 

Springer, 2014, pp. 47–62. 

[44]. C. Chan, S. Ginosar, T. Zhou, and A. A. 

Efros, ―Everybody dance now,‖ in 

Proceedings of the IEEE International 

Conference on Computer Vision, 2019, pp. 

5933–5942. 

[45]. Z. Shen, W.-S. Lai, T. Xu, J. Kautz, and M.-

H. Yang, ―Deep semantic face deblurring,‖ 

in Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 

2018, pp. 8260–8269.  

[46]. A. Bulat and G. Tzimiropoulos, ―Super-fan: 

Integrated facial landmark localization and 

super-resolution of real-world low resolution 

faces in arbitrary poses with gans,‖ in 

Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 

2018, pp. 109–117.  

[47]. K. Grm, W. J. Scheirer, and V. Struc, ―Face 

hallucination using ˇ cascaded super-

resolution and identity priors,‖ IEEE 

Transactions on Image Processing, vol. 29, 

no. 1, pp. 2150–2165, 2019.  

[48]. W. Ren, J. Yang, S. Deng, D. Wipf, X. Cao, 

and X. Tong, ―Face video deblurring using 

3d facial priors,‖ in Proceedings of the IEEE 

International Conference on Computer 

Vision, 2019, pp. 9388–9397.  

[49]. S. Menon, A. Damian, S. Hu, N. Ravi, and 

C. Rudin, ―Pulse: Self-supervised photo 

upsampling via latent space exploration of 



 

 

International Journal of Advances in Engineering and Management (IJAEM) 

Volume 3, Issue 6 June 2021,  pp: 1254-1266  www.ijaem.net    ISSN: 2395-5252 

 

 

 

 

DOI: 10.35629/5252-030612541266  Impact Factor value 7.429  | ISO 9001: 2008 Certified Journal  Page 1266 

generative models,‖ in Proceedings of the 

IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, 2020, pp. 2437–

2445.  

[50]. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, 

―Unpaired image-toimage translation using 

cycle-consistent adversarial networks,‖ in 

Proceedings of the IEEE International 

Conference on Computer Vision, 2017, pp. 

2223–2232.  

[51]. I. Goodfellow, J. Pouget-Abadie, M. Mirza, 

B. Xu, D. Warde-Farley, S. Ozair, A. 

Courville, and Y. Bengio, ―Generative 

adversarial nets,‖ in Advances in neural 

information processing systems, 2014, pp. 

2672–2680. [53] D. P. Kingma and M. 

Welling, ―Auto-encoding variational bayes,‖ 

CoRR, vol. abs/1312.6114, 2013.  

[52]. X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, 

and S. Paul Smolley, ―Least squares 

generative adversarial networks,‖ in 

Proceedings of the IEEE International 

Conference on Computer Vision, 2017, pp. 

2794– 2802. [55] J. Johnson, A. Alahi, and 

L. Fei-Fei, ―Perceptual losses for realtime 

style transfer and super-resolution,‖ in 

European conference on computer vision. 

Springer, 2016, pp. 694–711.  

[53]. X. Wang, R. Girshick, A. Gupta, and K. He, 

―Non-local neural networks,‖ in Proceedings 

of the IEEE Conference on Computer Vision 

and Pattern Recognition, 2018, pp. 7794–

7803.  

[54]. T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. 

Zhu, ―Semantic image synthesis with 

spatially-adaptive normalization,‖ in 

Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, 

2019, pp. 2337–2346.  

[55]. M. Everingham, S. A. Eslami, L. Van Gool, 

C. K. Williams, J. Winn, and A. Zisserman, 

―The pascal visual object classes challenge: 

A retrospective,‖ International journal of 

computer vision, vol. 111, no. 1, pp. 98–136, 

2015.  

[56]. T. Karras, S. Laine, and T. Aila, ―A style-

based generator architecture for generative 

adversarial networks,‖ in Proceedings of the 

IEEE conference on computer vision and 

pattern recognition, 2019, pp. 4401–4410. 

[57]. O. Ronneberger, P. Fischer, and T. Brox, 

―U-net: Convolutional networks for 

biomedical image segmentation,‖ in 

International Conference on Medical image 

computing and computer-assisted 

intervention. Springer, 2015, pp. 234–241.  

[58]. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and 

P. Dollar, ―Focal loss ´ for dense object 

detection,‖ in Proceedings of the IEEE 

international conference on computer vision, 

2017, pp. 2980–2988.  

[59]. D. P. Kingma and J. Ba, ―Adam: A method 

for stochastic optimization,‖ arXiv preprint 

arXiv:1412.6980, 2014.  

[60]. A. Kumar, T. Ma, and P. Liang, 

―Understanding self-training for gradual 

domain adaptation,‖ arXiv preprint 

arXiv:2002.11361, 2020.  

[61]. E. Agustsson and R. Timofte, ―Ntire 2017 

challenge on single image super-resolution: 

Dataset and study,‖ in The IEEE Conference 

on Computer Vision and Pattern 

Recognition (CVPR) Workshops, July 2017.  

[62]. T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. 

Kautz, and B. Catanzaro, ―High-resolution 

image synthesis and semantic manipulation 

with conditional gans,‖ in Proceedings of the 

IEEE Conference on Computer Vision and 

Pattern Recognition, 2018, pp. 8798–8807.  

[63]. K. Dabov, A. Foi, V. Katkovnik, and K. 

Egiazarian, ―Bm3d image denoising with 

shape-adaptive principal component 

analysis,‖ 2009.  

[64]. K. Nazeri, E. Ng, T. Joseph, F. Qureshi, and 

M. Ebrahimi, ―Edgeconnect: Generative 

image inpainting with adversarial edge 

learning,‖ 2019.  

[65]. R. Zhang, P. Isola, A. A. Efros, E. 

Shechtman, and O. Wang, ―The 

unreasonable effectiveness of deep features 

as a perceptual metric,‖ in Proceedings of 

the IEEE Conference on Computer Vision 

and Pattern Recognition, 2018, pp. 586–595.  

[66]. M. Heusel, H. Ramsauer, T. Unterthiner, B. 

Nessler, and S. Hochreiter, ―Gans trained by 

a two time-scale update rule converge to a 

local nash equilibrium,‖ in Advances in 

Neural Information Processing Systems, 

2017, pp. 6626–6637.  

[67].  ―Meitu,‖ https://www.meitu.com/en.  

[68]. ―Remini photo enhancer,‖ 

https://www.bigwinepot.com/index en.html.  

[69]. M. Arjovsky, S. Chintala, and L. Bottou, 

―Wasserstein gan,‖ arXiv preprint 

arXiv:1701.07875, 2017.  

[70]. A. Mittal, A. K. Moorthy, and A. C. Bovik, 

―No-reference image quality assessment in 

the spatial domain,‖ IEEE Transactions on 

image processing, vol. 21, no. 12, pp. 4695–

4708, 2012. 


